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ABSTRACT

The application of numerical optimization techniques to

the design of drive shafts is demonstrated. The analysis

investigated the effects of a small mass imbalance in con-

junction with the rotation of a shaft with synchronous

whirl.
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I. INTRODUCTION

Optimization and composite materials are two fields

that have seen considerable developments in recent years.

Advancements in these technologies have provided the design

engineer with new dimensions, the depths of which are yet

to be explored.

The major material characteristics that are advanta-

geously cultivated in composites are the high strength and

stiffness to weight ratios. The weight reduction is so

significant that the aircraft and aerospace industries have

concentrated a major portion of their reserach efforts in

this field. Investigations in improving the resistance of

composites against environmental factors such as temperatures,

corrosion, and wear are continuing and findings affirm the

contention that the future of this field is bright. However,

other industries are slow in utilizing these materials in

basic machinery elements, mainly due to a major drawback--

the high cost of manufacturing and processing. It is in

this vein that the importance of an optimized design becomes

apparent. Advancements in fabrication and processing of

composite materials coupled with the capability to optimize

designs may well lead composites into a more competitive

market.
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With the ultimate goal of optimizing the design of a

drive shaft made of comp,,site materials, a research program

was initiated. This report is the first in this investiga-

tive effort.

Before the intricacies introduced by the directional

material properties of composites are included in the

analysis, it was deemed necessary to probe the characteris-

tics of the design of an isotropic material. This will

enable one to foresee the trends and the adaptive measures

necessary when the composite material properties are con-

sidered. The application of numerical optimization tech-

niques to the design of an isotropic drive shaft is demon-

strated here. The effects of a small mass imbalance on the

bending moment and deflection of a shaft with synchronous

whirl are investigated. Mainly, however, the objective is

to develop an analysis procedure that may be adapted to the

peculiarities of composites and ultimately be used in op-

timizing a composite drive shaft design.

Section 2 defines the scope and limitations of the

analysis and optimization.

Section 3 discusses the analysis itself, the equations

and the modes of failure that were considered. Examples of

the analysis are shown.

Section 4 briefly describes the optimization program

[1,2] and presents the results of optimizing a number of

9



shaft designs. T"wo variable function space diagrams are

provided to illustrate the design space for different load

conditions.

Section 5 contains recommendations for future investi-

gations.

Appendix A contains a description of the FORTRAN program

used in the analysis and the program text. Appendix B shows

the derivation of equations for deflection, moment and shear

force.
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II. SCOPE AND LIMITATIONS

The analysis applies to shafts made of isotropic ma-

terials with simply supported or fixed-fixed end conditions.

Basic shaft design formulas are used except that the de-

flection and moment equations are derived to include the

effects of a small mass imbalance. The shaft is assumed

to rotate with synchronous whirl.

To- insure a continuous design field, the optimization

is constrained to subcritical speeds only. Supercritical

speeds introduce feasible design regions that are disjoint

from the primary design space. In this investigation, these

secondary areas are considered infeasible.

Since the optimization tends to a large radius-small

thickness design, radial stresses are neglected. However,

buckling of thin cylinders due to torsion and compression

is considered. The equations used for these failure criteria

do not include dynamic effects. A constant torque and a

steady, uniform axial force are the loads considered in

the formulas (3].

The analysis incorporates the capability to design a

shaft that may be used in two or more loading conditions.

For example, a shaft may be designed to transmit 50 HP at

300 RPM with an axial load of 2000 lbs. as well as to transmit

150 HP at 3000 RPM with a 1000 lb. axial load.

11



III. ANALYSIS

The problem is a shaft required to transmit a specified

horsepower at a given speed. There may be an axial load, F

or an internal presence, P. (See Figure 1.) Basic equations

are used throughout the analysis and fundamentals such as

formulas for area, volume, moment of inertia, polar moment

of inertia and radius of gyration are not repeated here.

However, certain stress calculations will be emphasized to

illustrate the flow of analysis.

Appendix B shows the derivations of the equations for

bending moment, deflection and shear for pinned-pinned and

clamped-clamped end conditions. These derivations have

taken into consideration the effects of a small mass imbalance

in conjunction with the rotation of a shaft with synchronous

whirl.

The inch-pound-second system of units (IPS) is used in

the computer program analysis. However, by changing the

equation for torque (line 50 in the FORTRAN text, Appendix A)

to reflect the International System of Units, the program

may be used effectively with consistent SI units.

12
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Figure 1. Applied Loads: Axial load (F), Inter-al pressure (P),
Torque (T), Mass imba_.-nce (e).

6=6 sin~

f 0 0x

a. Pinned-pinned end condition
6

I 6= - [1 - co 2rr 1

0

b. Clamped-clamped end condition

Figure 2. Assumed deflected shape of the shaft.

13



A. SIMPLY SUPPORTED BEAM

The deflected shape of the beam is assumed as:

6= o sin - (see Fig. 2). The solution of the govern-
0 2

ing equations equations is given in Appendix B. The deflection

is maximum at x = X/2

594  K1e + K2 (3.a)m ax 5 8- XK( .4 _ .2 , =2
max 384El-K () F (-)

2where: K1 = PA 2

p = mass per unit volume

A = cross sectional area

w = shaft speed is radians per second

K = pAg = weight per unit length

e = eccentricity of mass with respect to the axis
of rotation

2 = shaft length

E = Young's Modulus

I = Moment of Inertia

F = Axial Load

Certain characteristics of this equation are of particular

interest. If there is no rotation nor axial load, the formula

reduces to the classical equation for maximum beam deflection.

6 mx 5K2 k4max = 384EI
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If there is no axial load, the equation becomes unstable

(deflection goes to infinity) when El =pAw 2()4 or, solving

for the critical speed,

Wc = rjEl (3.1c)

which defines the first fundamental frequency of a simply

supported shaft.

If there is no rotation, instability arises when EI = F(1)
2

or

z2E
Fc = 72 E (3.1d)

recognizable as Euler's column buckling criteria.

With both rotation and axial load, the critical speed

becomes

W = El (3.1e)

pA Q4

To avoid the instability regions, the denominator of

equation (3.1a) must be given a lower bound greater than zero

(point A in Fig. 3). Additionally, a maximum deflection has

to be imposed to prevent computer overflow (point B in Fig. 3).

These limits have no relevance with the deflection constraint

used in the design optimization process (point C in Fig. 3),

but are used only to prevent numerical ill-conditioning on

the computer.
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Figure 3. Limits on the deflection. The solid curve repre-
sents the deflection values used in the analysis.
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The bending moment corresponding to the deflection calcu-

lated by equation (3.la) at x - /2 is

Mm W _ e + 6 (.i) 2 1 + F6 + 2 (3.1f)

When the weight tends to cancel the deflection, the corre-

sponding moment at the same cross section becomes
K2 2

M. M - 2 (3.1g)

The shear force is maximum at x - 0.

V = K 16  K e + K 2 T (3.1h)

B. CLAMPED-CLAMPED BEAM

The deflected shape of the beam is assumed as:

ST[ 1 - cos T .x (See Fig. 2b.) The deflection is

maximum at x - Z/2"

4 K e+K 2  (3.2a)6 -
384 EI - 0.746 KI - 96 (-) F

As in the simply supported beam, similar observations

regarding special loading conditions are apparent. If there

is neither rotation nor axial load, the formula for maximum

beam deflection results
K2 X4

- (3.2b)

max 3
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With no axial load, instability occurs when

384 EI - 0.746 pAw 2 or

- 22.68 El (3.2c)

which is the first fundamental frequency for a fixed-fixed

beam based on the assumed deflection used here.

When there is no rotation, instability arises when
Ft2

384 EI = 96 or

EI

F = (3.2d)
c 2

Euler's column buckling criteria.

With rotation and axial load, the instability occurs at

a smaller speed than that given by equation (3.2c),

c = 22.68 / EI - 0.02533 FZ4  (32)
V pAt4 "

The bending moment at x = /2 corresponding to the

deflection given by equation (3.2a) is

Km a 1 z " + - 6 + e l l + F 6 + K 2 (3 .2 f )

Mmax r 2T _T 7

A lesser bending moment occurs at the same cross section

when the weight tends to cancel the deflection.

18



M. =M - 2-- (3.2g)

The maximum shear occurs at x = 0.

=K1 62£ Kle£ K2
Vmax - K + K + K (3.2h)

The preceding calculations are performed in Subroutine

BEND, given in Appendix A.

C. STRESS ANALYSIS

With the deflection, shear and bending moments known at

the critical cross sections, the analysis proceeds with the

calculation of the stresses at the critical stress elements.

At midspan, the critical stress elements are on the outer

surface of the shaft where the axial stress (tensile or

compressive) is maximum (Points A and B, Fig. 4). Since the

shaft is in synchronous whirl, the same stress element, A,

will generally tend to be in tension throughout the rotation,

with the magnitude of the axial stress varying as the weight

effect becomes alternatingly additive and subtractive.

Element A is in the direction of the mass eccentricity from

the center of the shaft while element B is on the outer

surface in the opposite direction.

Most of the following equations are found in basic design

and applied mechanics books. References will be noted when

necessary.
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Axial stress due to bending moment (tension/compression)

a ( max 0 (3.3a)
xI

Mi r
a (min)- mi o

x I

Axial stress due to axial load (compression)

F (3.3b)x A

The axial stress due to internal pressure for thin-wall

cylinders is:

Pri
a - -- (3.3c)

Superposition with careful regard to sign conventions

provides the maximum and minimum tensile and compressive

axial stresses.

Hoop stress is primarily due to internal pressure and

rotational inertia [4]

Pr
0 (3.3d)

Yw 2ro 2  i-V r. 2]3+v [1 + (+lV (-)I (3.3e)

aH= g o

where y - weight per unit volume

- rotation in radians per second

v Poisson's ratio

r. - inside radius

r- outside radius

g - acceleration due to gravity

20



The shear stress at x - X2 is caused only by torsion

(shear force is zero).

Tr
TT 1 0 (3.3f)

where TT = shear stress due to torsion

T = torque

J = polar moment of inertia

At x = 0, the critical element is where the shear stress

due to the shear force along the cross section is additive

with respect to the shear stress due to torsion (element C,

Fig. 3). The shear stress due to Vmax for thin wall cylinders

[5] is

T 2 Vma x  (.g
Tv A (3.3g)

Superposition of equations (3.3f) and (3.3g) gives the total

shear stress at the critical stress element.

The axial stress at element C due to bending moment is

zero. The axial stress at this point is, therefore, caused

only by the axial load and the internal pressure, equations

(3.3b) and (3.3c).

The hoop stress is calculated by equations (3.3d) and

(3.3e).

21



l1i

stress element A

-- stress element a

a) At midspan

stress element C

b) At x =0

aH (hoop stress)

(shear stress)

a (axial stress)

c) Typical stress element. Radial
stresses are neglected.

Figure 4. Critical Stress Elements
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D. MODES OF FAILURE

Eight modes of failure are considered in this investiga-

tion. The first two evaluate the static strengths at the

critical stress elements using Von Mises criteria [5]. At

midspan,

a. a2 - + 2 + 3 T2  (3.4a)mid H aH ax x T

At x = 0

a 1 2 + a 2 +3T 2  (3.4b)
0 H H x x T+V

Failure is assumed if the yield strength of the material is

equal to or less than these Von Mises stresses multiplied by

a safety factor.

A limit on the deflection is imposed. A common practice

is to specify a maximum deflection in inch per foot of shaft

length. For example, as used in this report,

Smax = 0.005 inch/foot length

Since the optimization may lead to a thin cylinder design,

buckling due to torsion and compression are considered. The

critical torque and critical compressive stress for buckling

of thin cylinders [3] are;

Tc n ---J;-, I (3.4c)C 3(1-v o.75 (4C

23



a _ Et (3.4d)
c r3 (1-v2 )

Experimental data indicate that actual failure of the cylinders

usually occurs below fifty percent of the values calculated

from these equations. To accommodate this discrepancy and

the fact that the dynamic effects are not considered in the

derivation of these equations, comparatively higher safety

factors must be used for these failure modes.

The shaft is also checked for column buckling using Johnson's

or Euler's equations [5] as applicable. The actual slenderness

ratio is compared with the slenderness ratio where transition

occurs to determine which formulas apply. The calculated

critical load, using the appropriate equations for the end

condition, is compared to the actual load, again incorporating

a safety factor. Equations (3.1d) or (3.2d) are used if the

slenderness ratio falls in the Euler range. In the Johnson

region, the following equations [5] apply.

Fc = S -b 2.)2 (3.4e)
A c

where Sc = yield strength in compression

( ) = slenderness ratio

b=Sc 2 1

E = Young's Modulus

24



n = 1 for simple supports

4 for fixed-fixed ends

The effects of the fluctuating axial stresses are evaluated

for fatigue failure using the Goodman diagram [5]. Von Mises

stresses for the mean and alternating stresses are calculated

as follows:

a +m max 2m (3.4f)

U max - min
a 2 2

t _aH2  H + U + 3 T2 (3.4h)

a = (3.4i)

a a

The Goodman diagram is drawn (Fig. 5) and the safety factor

is determined analytically.

y
Se, y - x + Se/

Su a

oa

U X Sum

Figure 5. Goodman Diagram
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SSF 3X Se4j)
mr a m + Se

SU
m

where Se = fully corrected endurance limit

Su = ultimate strength

This safety factor is required to be greater than a specified

value.

Lastly, failure is assumed if a specified percentage of

the critical speed as calculated by equations (3.1e) or (3.2e)

is less than the shaft speed.

E. ANALYSIS EXAMPLES

The examples are chosen to illustrate several aspects of

the shaft design problem. The first is a design which vio-

lates almost all of the constraints while the second example

is one within the feasible region of the design field.

The material used in all the examples in this report is

UN G10150 HR steel, the properties of which are listed in

Table I [5].
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TABLE I

MATERIAL PROPERTIES

UNS Gl0150 HR STEEL

Young's Modulus 30.OE 06 psi
Shear Modulus 1.5E 06 psi
Poisson's Ratio 0.292
Weight Per Unit Volume 0.282 lbs/in3

Yield Strength 27.OE 03 psi
Ultimate Strength 50.OE 03 psi

27



1. Analysis Example I

A simply supported shaft with 0.1 inch eccentricity

is to transmit 150 HP at 3000 RPM (3150 in-lb torque),

with an axial load of 2000 lbs. For a shaft length of

120 inches, inside radius of 1.0 inch and thickness of

1.0 inch, the design violates the static and dynamic

strength, deflection, buckling due to compression, and

the speed constraints. The analysis of this design is given

below where an asterisk (*) denotes violated constraints on

the design.

Volume 0.11310E 04 in3

Weight 0.31893E 03 lbs
Moment of Inertia 0.11781E 02 in4

Polar Moment of Inertia 0.23562E 02 in4

*Critical Speed 0.14767E 04 RPM
Critical Axial Load 0.18764E 06 lbs
Critical Buckling T6rque 0.47469E 08 in lb
*Critical Buckling Stress 0.905493 07 psi
*Deflection 0.24000E 02 in
Bending Moment 0.36420E 08 in lb
Shear Force 0.62722E 06 lb
Axial Stress at A 0.95779E 07 psi
Axial Stress at B -0.95783E 07 psi
Hoop Stress 0.25013E 03 psi
Torsional Shear Stress 0.26738E 03 psi
Total Shear Stress 0.13337E 06 psi
Mean Axial Stress 0.95771E 07 psi
Alternating Axial Stress 0.81250E 03 psi
*Von Mises at Midspan 0.95785E.07 psi
*Von Mises at x = 0 0.23100E 06 psi

*28



The calculated deflection is the maximum value

imposed to avoid numerical ill-conditioning (point B, Fig. 3).

Since the deflection affects most of the relevant parameters

in the analysis, the calculated stresses are unreliable and

not valid. These values, however, tend to direct the design

towards the feasible region.

2. Analysis Example 2

This shaft is similar to the first example in design

conditions and loading. The only difference is that the

dimensions are such that no constraints are violated, but

two constraints are active or critical. The shaft is

120 inches long with an inside radius of 6.39 inches and

thickness of 0.0369 inch. This, in fact, is the optimized

design for the given loading as calculated by COPES-CONMIN

[1,2]. The results of the analysis follows, where a double

asterisk (**) denotes values at their design limit.

Volume 0.17866E 03 in3

Weight 0.50382E 02 lbs
Moment of Inertia 0.30629E 02 in4

Polar Moment of Inertia 0.61258E 02 in4

**Critical Speed 0.60061E 04 RPM
Critical Axial Load 0.39557E 05 lbs

**Critical Buckling Torque 0.31490E 05 in lb
Critical Buckling Stress 0.10400E 06 psi
Deflection 0.43813E-01 in
Bending Moment 0.17026E 05 in lb
Shear Force 0.84895E 03 lbs
Axial Stress at A 0.22326E 04 psi
Axial Stress at B -0.49193E 04 psi
Hoop Stress 0.29778E 04 psi
Torsional Shear Stress 0.33079E 03 psi
Total Shear Stress 0.14712E 04 psi
Mean Axial Stress 0.20739E 04 psi
Alternating Axial Stress 0.15872E 03 psi
Von Mises at Midspan 0.69313E 04 psi
Von Mises at x = 0 0.39193E 04 psi
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In each of the examples, the analysis proceeds as

follows. All shaft characteristics like cross sectional

area, volume, weight, moment of inertia and polar moment

of inertia are first calculated. Parameters that depend

only on geometry such as critical torque and compressive

stress for buckling of thin cylinders, and critical speed

are then determined before Subroutine BEND, where the de-

flection, bending moments and shear force at the critical

cross sections are computed, is called.

At midspan, the absolute values of the axial

stresses at elements A and B (see Fig. 4a) are compared

to determine which element is critical. In both examples,

element B is considered critical for strength evaluation.

At x = 0, the critical element, C, is where the torsional

shear stress and the shear stress due to the shear force

along the cross section are additive. The Von Mises

stresses for each of the critical elements are then calcu-

lated using equations (3.4a) and (3.4b). The rest of the

analysis is a straight forward application of the equations

for the critical parameters and the constraints.

30



IV. OPTIMIZATION, RESULTS AND CONCLUSIONS

A. OPTIMIZATION AND RESULTS

There are a number of optimization programs available,

each one using different techniques in locating the desired

optimum design. COPES-CONMIN [1,2] is a versatile program

that may be used for sensitivity analysis and two variable

function space study as well as an optimization tool.

Provided with a user supplied analysis program (Subroutine

ANALIZ) where the objective function, constraints and other

relevant parameters are calculated, it determines a usable

and feasible sector from which a search direction is chosen.

This choice of search direction is made by using such informa-

tion as the gradients of the objective function, gradients of

active and violated constraints and the degree of push-off

these constraints violations generate. This iterative process

of minimizing/maximizing the objective function by changing

the design variables is terminated when no further improvement

can be made.

In this exercise, the objective function to be minimized

is the volume, with the radius and thickness as design

variables. Several design examples are shown to demonstrate

the effects of the different parameters on the optimized

design and on the design space itself. Seven examples are
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presented corresponding to the loading conditions as listed

in Table II. Two variable function space diagrams are

generated to illustrate these effects. The numbered curves

in the graphs represent the corresponding constraints shown

in Table III. The shaded side of a curve represents the un-

feasible area of the design space with respect to the cor-

responding constraint. The dashed curves represent contours

of the objective function, the numbers indicating the

volume in cubic inches.

TABLE II

OPTIMIZATION EXAMPLES

Loads
No. Horsepower RPM Pressure Axial Load

(psi) (lbs)

1 150 300 0 0
2 150 300 1000 0
3 150 300 0 2000
4 150 3000 0 0
5 150 3000 1000 0
6 150 3000 0 2000
7* 150 300 0 0

150 3000 0 2000

*Example No. 7 is a design for two load conditions.
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TABLE III

DESIGN CONSTRAINTS

Number Constraint

1 Static Strength at Midspan
2 Static Strength at x = 0
3 Deflection
4 Buckling due to Torque
5 Buckling due to Compression
6 Column Buckling
7 Dynamic Strength (Fatigue)
8 Speed

33



EX44PLE I- 14IITIAL DESI34

SHAFT DI'4ENS134S :
RI a 0.1000DE 01 TH - 0.10000E 01 SL 0*12300E

DESIGN CONOIT134S :
EC:E4TRICITV a0.100002S 00

END C)NDITI04S :PINNED-PINNED

LOADS :
HORSEPOWER RPM4 PRESSURE AXIAL L3AO

O.15000E 03 0.30000E 03 0.0 0.0

4NALYSIS RESI.TS

TORQUE(l) 0.31533E 05

VOLUM~E 0.11313E 04

WEIGr4T 0.31893F 03
MOMENT 3F 14ERTIA 0.LLTSLE 02

POLAR 140MENT )F INERTIA 0.23562E 02

CRITI:AL SPE:-) 0.14828E 04

CRITICAL AX!AL LOAD 001876'eE 06

CRITICAL BUC(LING Tr]RQJE O.4T'i69E 08

CRITICAL BUC(..PJG STRESS 0.90549E 07

DEFLECTION 0.26584E-0I

BENDING M3ME'IT 0.50477E 04

SHEAR FJRCE 0.23TIftE 03

AXIAL STRESS AT A 0.85692E 03

AXIAL STRESS AT B -0,85692E 03

HOOP STRESS Os250139E 01

TORSIJNAL SHEAR STRESS 0.26738E 04

TOTAL SHEAR STRESS 092TLTSE 04

MEAN AXIAL STI.ESS 0.44?63E 02

ALTERNATING AXIAL STRESS 0.81216E 03

VON 41SES AT MIOSPA4 0.47095E 04

VON MISES AT X=O. 0s47073E 04
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EXAMPLE I. : OPTIMUM OESIGJ

SHAFT OIA4_NSI)%4S

RI-= 0.25847E 01 TH u 0.11124E 00 SL a 0.12000E

DESIGN CONDITIONS :

ECCE4TRICIT x O.10000E O0

END C3NDITI0S : PINNED-PINNED

LOADS :

HORSEPOWER RPM4 PRESSURE AXIAL LOAD

0.15000E 03 0.30000E 03 0.0 0.0

%IALYSIS RESULTS

TOROJE(L) 0.31503E 05

VOLJ4E 0.22145E 03

WEIGHT 0.62451E 02

MOME4T OF I4ERTIA 0.64353E 01

POLAR MOMENT 3F INERTI 0.12971E 02

CRITICAL SPEED 0.24T5E 04

CRITICAL AXIAL LOAD 045137E 05

CRITICAL BUC(LING TORQJE 0.31503E 06

CRITICAL BUCKLING STRESS O.T4729E 06

DEFLECTION 0.92753E-02

BENDING MOME4T 0.95479E 03

SHEAR FORCE 0o3968LE 02

AXIAL STRESS AT A 0.39998E 03

AXIAL STRESS AT B -0.39998S 03

HOOP STRESS 0.51655E 01

TORSIONAL SHEAR STRESS 0.659805 04

TOTAL SHEAR STRESS 0.66f*LDE 04

MEAN AXIAL STRESS 0.75507E 01

ALTERNATING AKIAL STRESS 0.39243E 03

VON 4ISES AT 4IDSPAN 0.11435E 05

VON MISES AT X*0. 0.1153E 05
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EXMPLE 2. € I14ITIAL DESIGI

SHAFT DIMENSI34S :
RI = 0.10000F 01 TH = 3.1O000E 01 SL 0.12000E

DESIGN CONDITIONS :

ECCENTRICITY O.t0000E 30

END Z3NDITIOJS : PINNED-PINNED

LOADS -

HORSEPOWER RP4 PRESSURE AXIAL LOAD

0.15000E 03 O.30000E 03 0.10000E 34 0.0

k4ALYS!S RESULTS

TORQJE(1l) 0.3L500E 05

VOLU_4E 0.11313E 04

WEIGHT 0.31893E 03

MOME,4T 3F 14EITIA 0..1781E 02

POLAR MOMENT 3F INERTIA 0.23562E 02

CRITICAL SPEED 0.148Z8E 04

CRITICAL AXIAL LOAD 0.18764E 06

CRITICAL BUC(LING TORQUE 0.47469E 08

CRITICAL BUC<LING STRESS 0.90549E 07

DEFLE3 TIO 0.26584E-01

BENDING MOME4T 0.504775 04

SHEAR FORCE 0.2071f+E 03

AXIAL'STRESS AT A 0.18569E 04

AXIAL STRESS AT B O.,.430BE 03

HOOP STRESS 0.66917E 03

TORSIMNAL SHEAR STRESS 0.26738E 04

TOTAL SHEAR STRESS 0.2T78E 04

MEAN AXIAL STRESS 0.10448E 04

ALTERNATING AXIAL STRESS 0.81216E 03

VON 4ISES AT MIDSPAN 0.49093E 04

VON MISES AT X=O. 0.47546E 04
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EX%14PLE 2. : JDTI'4UM DESIG4

SHAFT DIMENSI3NS :

RI m 0.1.8625E 01 TH = 3.25560E 00 SL = 0.12000E

DESIGN CONDITIONS :

ECCElTRICITY = 0.10000E 30

END CNDITIO4S : PINNED-PINNED

LOADS :

HORSEPOWER RPM PRESSURE AXIAL LOAD

0.15300E 03 0.30000E 03 0.IOO00E 04 0.0

A'4ALYSIS RESULTS

TORQJE(l) 0.31500E 05

VOLU14E 0.39958E 03

WEIGHT 0.11268E 03

MOMENt 3F INERTIA 0.66573E 01

POLAR MOMENT 3F INERTIA 0,13316E 02

CRITI:AL SPE=.) 0.18754 04

CRITICAL AXIAL LOAD 0.751ft4E 05

CRITICAL BUC(LING TOROE 0,23553E 07

CRITICAL BUC(LING STRESS 0.22602E 07

DEFLE:TION O.L6358E-01

BENDI4G MOMEWT 0,17476E 04

SHEAR F3RCE 0.72247E 02

AXIAL STRESS AT A 0.7570@E 04

AXIAL STRESS AT B 0.64537E 04

HOOP STRESS 0.65487E 04

TORSIONAL SHEAR STRESS 0.50344F 04

TOTAL SHEAR STRESS 0.5077RE 04

MEA4 AXIAL STIESS 0.70306E 04

ALTERNATING AXIAL STRESS 0.54027E 03

VON MISES AT MIDSPAN 0.11254E 05

VON 4ISES AT X=O, 0.10965E 05

38

-. ,,,-,=t



LLq

CLC

LiLI

z I o
M '

.............. ..........

L39



EX%4PLE 3. : IrTIAL DESI34

SHAFT DIMENSIONS :

RI = 0.10000- 01 TH = 3.10000E 01 SL O.12000E

DESIGN :ONDITI3NS :

ECCENITRICITY = 0.10000E D0

END C3NDITIO04S : PINNEO-PIN4JED

LOADS :

HORSEOOWER RPM PRESSURE AXIAL LOAD

0.15300E 03 0.30DOOE 03 3.0 0.20000E 04

tqALYSIS RESULTS

TORQU=(Ll 0.31503F 05

VOLUME- 0.11310E 04

WEIGHT 0.31893E 03

MOME'4T OF INERTIA 0.-t7lE 02

POLAR MOMENT oF INERTIA 0.235625 02

CRITICAL SP5=-) 0.14767E 04

CRITICAL AXIAL LOAD O.L8764E 06

CRITICAL BUC<LING TOROIE 0.47469 _ 08

CRITICAL BU:(LING STRESS 0.90549E 07

DEFLECTION O.268i(E-01.

BENDI4IG M3ME4T 0.541447_ 04

SHEAR FORCE 0.20723E 03

AXIAL STRESS AT A 0.7069TE 03

AXIAL STRESS T B -0.11314E 04

HOOP STRESS 0.25D13E 01

TORSI3NAL SHEAR STRESS 0.26733E 04

TOTAL SHEAR STRESS 0.27178E 04

MEA4 AXIAL STRESS -0.10519E 03

ALTERNATING AXIAL STRESS 0.81216E 03

VON MISES AT MIDSPAN 0.47577E 04

VON 4ISES AT X=O. 0.47073E 04
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EX%1PLE 3. : JPTIMUM DESIGN

SHAFT DIMENSI3NS .

RI = 0.25907E 01 TH4 = 0..1i119E 00 SL - 0.12000E

DESIGN CONDrTIONS :

ECCENTRICITY = 0.10000E 00

END :JNDITIO S I PI4NED-PINNED

LOADS :

HORSEPOWER RPM PRESSURE AXIAL L3AD

0.1530OE 03 0.30000E 03 0.0 O.20000E 04

A'IALYSI S RESULTS

TOROUE() ( R 0.31500E 05

VOLU4- O.22186E 03

WEIG4T 0.62564E 02

MOMENT OF INERTIA 0,64766E 01

POLAR MOMI=NT )F INERTIA 0.129535 02

CRITIZAL SPEED 0.2463ST 04

CRITICAL AXIAL LOAD 0.45241.E 05

CRITICAL BUC(LING TOROJE 0.31500E 06

CRITICAL BUC(LING STRESS 0.74527S 06

DEFLE:TION 0.93752E-02

BENDI'JG M3ME4T 0.9817LE 03

SHEAR FORCE 0.39758E 02

AXIAL STRESS AT A -0.67221S 03

AXIAL STRESS AT B -0.14913E 04

HOOP STRESS 0.51888E 01

TORSI)NAL SHEAR STRESS 0.65706E 04

TOTAL SHEAR STRESS 0.66136E 04

MEAN AXIAL STRESS -0.10637E 04

ALTERNATING AXIAL STRESS 0.3915tE 03

VON MISES AT MIOSPAN 0.11478E 05

VON MISES AT X-0. O.L1455E 05
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EX%4PLE 4. : INITIAL DESIG4

SHAFT DIMENSI34S :
RI = 0.10000- 01 TH O.1OOOOE 01 SL 0.12000E
DESIGN CONDITI3NS :
ECZENTRICITY - O10000E 00

END :3NDITIO4S PINIED-PIN45D

LOADS :
HORSE2OWER RP4 OESSURE AXIAL L3AD
0.15000E 03 0.30000E 04 0.0 0.0

%NALYSIS RESULTS
TORQUE (0) O.31500E 04
VOLU " 0.11310E 04
WEI$7IT 0.31893E 03
MO4E'IT OF INEITIA 0.11781E 02
POLAR MOMENT 3F INERTIA 0.23562E 02
CRITI:AL SPEE) 0.14828E 04
CRITIZAL AXIAL LOAD 0.18764E 06

CRITICAL BUC(ING TORQUE 0.47469E 08
CRITICAL BUC<L!NG STRESS 0.90549E 07
DEFLE:TION 0.24000E 02
BENDING MOMENT 0.23831E 08
SHEAR FORCE 0.62722E 06
AXIAL STRESS 4T A 0.40406E 07
AXIAL STRESS AT B -0.40406E 07
HOOP STRESS 0*25013E 03
TORSI]NAL SHEkR STRESS 0.26738S 03
TOTAL SHEAR STRESS 0.1333TE 06
MEAN AXIAL ST.kESS 0.40397E OT
ALTERNATING AXIAL STRESS 0.81ZOOE 03
VON MISES AT MIDSPA4 0*40404E 07
VON MISES AT X=O. 0.23100 = 06
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EX%4PLE 4. : 3PTIP4UM DESTG4

SHAFT DIMENS[13'S :

RI a 0.63798E 01 TH = 1,36963E-DL SL 0 0,12000E

DESIGN CONDIT!ONS :

ECZSETRICITY = 0.1OO00E 00

END CONDITIOS : PINNED-PINNED

LOADS:

HORSEPOWER RPM PRESSURE AXIAL L3AD

0.15000E 03 0.30000E 04 0.0 0.0

ANALYSIS RESULTS

TORQUE(L) 0.31500E 04

VOLUM E 0.T83LE 03

WEIG-T 0.50283 . 02

MOMENT OF 14EITIA 0.304L5E 02

POLAR MOMENT 3F INERTIA 0.63833E 02

CRITI:AL SPE- 0.60005E 04

CRITI:AL AXIA-. LOAD 0.3947bE 05

CRITICAL BUC(LING TOROJE 0.31494E 05

CRITICAL BUC(LING STRESS 0.10432E 06

DEFLE.TION 04392.E-01

BENDING MOMENT 0.76214E 04

SHEAR FORCE 0.84773E 03

AXIAL STRESS AT A 0.16073S 04

AXIAL STRESS AT B -0.16079E 04

HOOP STRESS 0.29628E 04

TORSIONAL SHEAR STRESS 0.33228- 03

TOTAL SHEAR STRESS 0.14733E 04

MEAN AXIAL STRESS 0,14488E 04

ALTERNATING AXIAL STRESS 0.15913E 03

VON MISES AT MIDSPAN 0.26327E 04

VON MISES AT X-0. 0.39103E 04
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EX%4PLE 5. : INITIAL DESIGN

SHAFT DIMENS13NS

RI = 0.1OOOOE 01 TH = O. OOOOE 01 SL = 0.12000E

DESIGN CONDITIJNS :
ECCENTRICITY = 0.1O0005 00

END CINDITIO4S : PINNED-PINNED

LOADS :
HORSEPOWER RPM PRESSURE AXtAL LOAD

O.15000E 03 0.30000E 04 0.10000_ 04 0.0

A4ALYSIS RESUI.TS

TORQUE(1) 0.31500E 04

VOLUME 0.11313E 04

WEIGHT 0.31893E 03

MOMENT OF INERTIA 0.11781F_ 02

POLAR MOMENT 3F INERTIA 0.23562E 02

CRITI, AL SPE=,) 0.i4828E 04

CRITICAL AXIAL LOAD 0.18764E 06

CRITICAL 8UC(LING TORQJE 0.47459E 08

CRITICAL BUC(,IING STRESS 0.90549E 07

DEFLECTION 0.24003E 02

BENDING MOME4IT 0o23801E 08

SHEAR F3RCE 0.62722E 06

AXIAL STRESS AT A 0.40416E 07

AXIAL STRESS AT 8 -0.40396E 07

HOOP STRESS 0.gI680E 03

TORSIDNAL SHEAR STRESS 0o26738E 03

TOTAL SHEAR STRESS 0.13337E 06

MEAN AXIAL STRESS 0.40407E 07

ALTERNATING AXIAL STRESS 0.81203E 03

VON 4ISES AT MIOSPAN 0.4041iE 07

VON MISES AT X=0. 0.23103E 06
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EXMPLE 5. : OPTIMUM DESIG4

SHAFT OIMENS134S :

RI , 0.60844E 01 TH =.61266E 00 SL = 0.12000.

DESIGN CONDITIONS :

ECCENTRICITY = O.10000E 00

END C3NDITIOS : PINNED-PIN4ED

LOADS :
HORSEPOWER RPM PRESSURE AXIAL LOAD

0.15300E 03 0.30000E 04 0.IO000E 04 0.0

%44LYSIS RESU.TS

TOROJE( 1) 0O31530E 04

VOLJqE 0.29521E 04

WEIGHT O.83253F 03

MOMEiT OF INEITIA 0.50353E 03

POLAR MOMENT 3F INERTI% O.10071E 04

CRITICAL SPEED 0.60033E 04

CRITICAL AXIAL LOAD 0.65357E 06

CRITICAL BUC(LING TOROJE 0.34tt01E 08

CRITICAL BUCKLING STRESS 0.16557E 07

DEFLECTION O.43926E-01

BEN3ING MOME4T 0.12619E 06

SHEAR FORCE 0.14035E 05

AXIAL STRESS AT A 011609E 05

AXIAL STRESS AT B 0.82525E 04

HOOP STRESS O.12589E 05

TORSIONAL SHEAR STI.ESS 0.20948E 02

TOTAL SHEAR STI.ESS 0.11623E 04

MEAN AXIAL STRESS 0.11443E 05

ALTERNATING AKIAL STRESS O.L6609E 03

VON MISES AT 4IDSP&N O..2129E 05

VON MISES AT X=O. 0.1274 E 05
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EXT4PLE 6. I41~dTIAL 0ESIG4I

SHAFT DIMENSI)'lS :
RI a 0.10000.: 01 T~4 3 .10000E 01 SL 0 .12000E

DESIGN CONDirIONS :
ECCE'4TRICITY *0.10000E 30

END C3NDIT104S :PINNED-PINNED

LOADS:

HORSEPOWER RP4I PRESSURE AXIAL LOAD

0.15000E 03 0.30000E 04 0.0 0.20000E 04

A44ALYSIS RESULTS

TORQJE(l) 0.31500S 04

VOLU'4= 0.11313S 04

WEIGHT 0.31893E 03

MO4E~t OF NIETIA 0.1,78E 02

POLAR MOMIENT OF INERTIA 0.23562E 02

CRITICAL SPEF) 0.14?7E 04

CRITIZAL AXIA. LOAD 0.18764E 06

CRITICAL BUC(LIMIG TORQUE 0.47469E 08

CRITICAL BUC'(LING STRESS 0.90549E 07

DEFL E, TI34' 0.24003E 02

BENDINJG MOME'IT 0.56420E 08

SHEAR F3RCE 0.62722E 06

AXIAL STRSSS AT A 0.95779E 07

AXIAL STRESS AT B -0.95T93E 07

HOOP STRESS 0.25013E 03

TORSIONAL SHEAR STRESS 0.26T38E 03

TOTAL SHEAR STRESS 0.1333TE 06

MEAN AXIAL ST~kESS 0.95771E 07

ALTERNAT1'4G AXIAL STRESS 0.81250E 03

VON NISES AT NIDSPAN 0.95785E 07

VON MISES AT X-0. 0.23100E 06
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EXAMPLE 6. : 3PTI4UM DESIGNJ

SHAFT DIMENSIONS :

RI a 0.63959E 01 TH 3.36942E-01 SL a 0.12000E

DESIGN CONDIrI3NS :

ECCE4TRI:ITY 0.11000E 30

END C3NOITIONS : PINNED-PINNED

LOADS *

HORSEPOWER RPM PRESSURE AXIAL LOAD

O.l53OE 03 0.30000E 04 3.0 0.20000E 04

A4ALYSIS RESJLTS

TOROJE(l) 0.3150OE 04

VOLJME 0.17856= 03

WEIGHT 0,50382 . 02

MOMENT OF IN.RTIA 0.3329S 02

POLAR MOMENT OF INERTIA 0.61259E 02

CRITI:AL SPE) 0.63061E 04

CRITICAL AXIAL LOAD 0.39557E 05

CRITICAL BUC(L!NG TOROUE 0,31493E 05

CRITICAL BU:(LING STRESS 0.1O400E 06

DEFLE^TION 0.43813E-01

BENDING MOMEqr O.17026E 05

SHEAR FORCE 0.84895E 03

AXIAL STRESS AT A 0.223ZE 04

AXIAL STRESS A" B -0.49193E 04

HOOP STRESS 0.29773E 04

TORSIONAL SHEAR STRESS 0.33073E 03

TOTAL SHEAR STRESS 0.14712E 04

MEAN AXIAL STESS 0.23733E 04

ALTERNATING AXIAL STRESS 0.15872E 03

VON MISES AT MIDSPAN 0.69313E 04

VON MISES AT X=O. 0.39L93E 04
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EX%4PLE 7. : INITIAL DESIGI

SHAFT DIMENSIONS

RI = 0.1O000 _ 01 TH - 3.I3000E 01 SL = 0.12000E

DESIGN CONDITIONS :

ECCENTRICITY O,1O000 30

END CONDITIONS : PINNED-PINNED

LOADS :

HORSEPOWER RPM PRESSURE AXIAL LOAD

O.15OOE 03 0.30000E 03 D.0 0.0

0.15300E 03 O.30000E 04 3.0 0.20000E 04

AIALYSIS RESULTS

TORQUE(l) 0.31500E 05

TOROJE(2) 0.3150OE 04

VOLJME 0.11313E 04

WEIGHT 0.31893E 03

MONENT OF INERTIA 0.117819 02

POLAR MOMENT OF INERTIA 0.23562E 02

CRITICAL SPE-) 014767E 04

CRITICAL AXIAL LOAD 0.18764E 06

CRITICAL BUC{'.ING TORQUE 0.47469E 08

CRITICAL BUC'LING STRESS 0.90549E 07

DEFLE:TION 0.240303E 02

BENDING MOMEIT 0.56420E 08

SHEAR FORCE 0.62722c 06

AXIAL STRESS AT A 0.95779E 07

AXIAL STRESS AT B -0.95T83E 07

HOOP STRESS 0.25013E 03

TORS1ONAL SHEAR STRESS 0.26733E 03

TOTALSHEAR STRESS 0.13337E 06

MEAN AXIAL STRESS 0.95771E 07

ALTERNATING AXIAL STRESS 0.81250E 03

VON MISES AT M!DSPAN 0.95785E 07

VON MISES AT X=O. 0.23100E 06
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EXA0LE 7. : )PTI4UM DES134

SHAFT DIMENS13NS :

RI = 0.63551E 01 TH = 0.93009E-01 SL = O.12000E

DESIGN CY.NDIIINS

ECCE4iTRICITY = 0.IO000= 30

END C3NDIT104S , PINN4ED-PINNED

LOADS :

HORSEPOWER RPM PRESSURE AXIAL LOAD

0.15000E 03 0.30000E 03 0.0 0.0

0.15300E 03 3.30000E 04 0.0 0.20003E 04

%0 LYSIS RESULTS

TORQUE(l) 0.31533E 05

TORQJE (2) 0.31500E 04

VOLJME 0.44893E 03

WEIGHT 0.12660E 03

MOME4T OF I94E TIA 0.76653E 02

POLAR MOMENT JF INERTIA 0.15332F 03

CR!TICAL SPEED 0.6000)3E 04

CRITICAL AXIA'. LOAD 0.99393E 05

CRITICAL BUC(LING TORQUE 0.315t71E 06

CRITICAL BUC(LING STRESS 0.26122E 06

DEFLECTIO'4 0.43932E-01

BENDING MOMEBJT 0.42893E 05

SHEAR FORCE 0.21344E 04

AXIAL STRESS AT A 0.30733E 04

AXIAL STRESS AT B -0.41425E 04

HOOP STRESS 0.29828E 04

TORSINAL SHEAR STRESS O.L324BE 03

TOTAL SHEAR STRESS 0.12736E 04

MEAN AXIAL STRESS 0.29136E 04

ALTERNATING AXIAL STqEiS O.L5973E 03

VON MISES AT MIDSPNN 0.62021S 04

VON 41SES AT X=O. 0.3TOg9E 04
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B. OBSERVATIONS AND CONCLUSIONS

With all other parameters held constant, an increase in

speed drives the design to a very large inside radius while

reducing the thickness considerably. This trend is so

strong that a reasonable lower bound on the thickness must

be given to prevent numerical ill-conditioning. The intro-

duction of eccentricity increases the effect of rotation on

the stresses and the optimization produces slightly larger

values for the design variables. This effect is reduced,

however, by the constraint on the deflection.

As the internal pressure is increased, the tendency is

to produce an optimized radius that is smaller, and a larger

thickness. This may be explained by the direct effect of

the internal pressure on the hoop stress which in turn would

require a larger thickness to support the higher stress.

The effect of axial load is reflected on the deflection.

Again, if very small deflections are allowed, the axial load

effects are reduced. The major parameter that is affected

is the axial stress.

A notable characteristic shown by the two variable

function space diagrams is the tendency of the strength

constraints to curl back as the radius is increased. This

signifies the existence of an upper limit on size for a given

design load. The increase in mass, especially at high speeds,

increases the stresses considerably leading to violation of
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the strength constraints. This phenomenon is primarily a

result of the eccentricity of the mass but also is due to

the static weight of the shaft itself.

It is also noted that these strength constraints generally

run close to each other in an almost parallel manner. The

dynamic or fatigue constraint maintains a position such that

coming from the feasible range towards the infeasible area,

it is activated before the static constraints are encountered.

In effect, the latter constraints are redundant in rotating

shafts. However, these are kept in the analysis to allow

solution of static problems.

The versatility of the program should not be lost in the

emphasis on drive shaft applications. With the appropriate

loadings, one may use it to solve structural problems like

columns, beams and pressure vessel designs. The objective

function need not be confined to the volume. For example,

given a specific initial dimensions, one may minimize the

Young's modulus to determine whether or not a certain

material may be utilized; or to determine how low the modulus

could get before the shaft fails. If the outer dimension

is critical to the design, one may set a specific value on

the diameter and let all other parameters vary during

optimization.

In summary, numerical optimization provides an efficient

and effective way of improving shaft designs. The analysis
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used in this exercise is a first step when compared to the

boundless refinements in techniques that are possible.
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V. RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

The study has shown the feasibility of using numerical

optimization techniques in the design of drive shafts within

the limitations imposed in the analysis. Further studies on

the same design field may be pursued by eliminating some of

these limitations. For example, the unfeasible region defined

by the speed constraint extends only to some discrete distance

and a supercritical feasible design area does exist. It will

be interesting to develop optimization techniques to accommo-

date this disjoint design field and to investigate the pecu-

liarities this will introduce to the analysis.

Another investigation may be concerned with shafts with

variable thickness and radius along its length. The inclusion

of radial stresses in the calculations, the use of finite

element methods in three dimensional stress analysis of the

problem, and vibration considerations are but some of the

aspects of research that may be useful in future analyses of

composite materials.

The challenge of including the unique material character-

istics of composites in the design will invariably stimulate

a lot of young minds. However, the handling of these

direction oriented properties in stress analysis have already

been investigated [6through 12], and the tools required to
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carry out the program are available. COMAND (13] offers a

simplified composite analysis procedure for panels. Such

procedures, adapted with the program used in this investi-

gation could result in a simplified approach to composite

drive shaft analysis. In this procedure, failure of the

shaft is assumed if a single ply fails and the entire

analysis is performed in a ply by ply basis. Since the

stress elements have to be in a differential level, the

composite material is assumed to be homogenous and uni-

directionally isotropic at the differential range. It will

also be necessary to assume that stresses throughout the

thickness of the ply is uniform and equal to the stresses

at the outer element of the ply. Analysis may then be

performed in the classical procedure, solving for the

stresses along the major shaft axes. The material properties

to be used in the calculation must be equivalent values

derived from the directional properties using transformation

of axes equations. References 10 and 13 present procedures

to calculate the corresponding material properties, stresses

and strains along the major axes of the shaft and the fiber

orientation coordinates.

More involved investigations could deal with failure

modes of the whole shaft instead of a single ply, three

dimensional analysis of plys including transverse shear

stresses, delamination problems, thermal effects, and others.
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The field of composites also opens up another group of

considerations like the effects of stacking different ply

orientations at different sequences, unsymmetrical laminates,

unequal thicknesses of plys and other factors relevant only

to composites.
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APPENDIX A

The FORTRAN program used in this investigation is

described here. Subroutine ANALIZ provides the basic

analysis used in the optimization. It reads the initial

design description and calculates the values of the objec-

tive function, constraints, and all other parameters

necessary to solve the analysis problem. COPES-CONMIN

updates the design to minimize/maximize the objective

function, iterating until no further improvement in the

objective function is possible without violating one of

the constraints. This process is shown in the flow diagrams.

The global catalog lists the location, FORTRAN name,

mathematical symbol and description of the parameters used

in the optimization. These parameters are contained in the

labeled COMMOM block, GLOBCM.

There are at least five input cards to describe the

initial design. The first card contains the initial

dimensions--inside radius, thickness and shaft length. The

second card describes the material used. Young's modulus,

shear modulus, Poisson's ratio, weight per unit volume,

yield strength, ultimate strength and compressive strength

are read here. The endurance limit is internally calculated

using the endurance limit factors read from the third card.
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The size factor, CB, is internally updated as the shaft

diameter is varied during optimization.

The fourth and fifth cards specify the design and load

conditions. The parameter, LC, allows the user to choose

the end conditions applicable to his requirements. Pinned-

pinned and clamped-clamped analyses are available while

clamped-pinned and cantilever end conditions are yet to be

developed. The parameter LCC allows multiple loading design.

One can thereby design a shaft that is capable of supporting

LCC different load combinations.

The magnitude of mass imbalance may be read as a specified

distance from the center of the shaft, EO, or as a specified

fraction, EC, of the shaft radius. The safety factor

generally used in the analysis is also specified in the fourth

card.

The fifth card specifies the horsepowr, shaft speed in

RPM, internal pressure and axial load for each loading.

Additional cards are used up to LCC number of loadings. The

torque is calculated internally in inch-pounds. The follow-

ing table summarizes the required information for subroutine

ANALIZ.
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TABLE IV

INPUT CARDS

CARD INFORMATION FORMAT

1 RI, TH, SC 8F10.2
2 E, G, PR, SPWT, I/S

SU, YC 8E10.2
3 CA, CE, CC, CD, CE,

CF 8F10.2
4 LC, LCC, EO, EC, SF 215, 3FI0.2
5 HPf RPM, P, F 8F10.2

Subroutine BEND calculates the bending moment, deflection

and shear force at the critical cross-sections of the beam.
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SUBROUTINE ANALIZ (ICALC)
FLOW DIAGRAM

ICALC = 1

READ INITIAL DIMENSIONS

READ MATERIAL PROPERTIES

READ DESIGN CONDITIONS

PRINT ALL INPUT

ICALC = 2

CALCULATE GEOMETRIC PARAMETERS

CALCULATE OBJECTIVE FUNCTION

CALL SUBROUTINE BEND

" CALCULATE MAXIMUM DEFLECTION

" CALCULATE BENDING MOMENTS

" CALCULATE SHEAR FORCE

CALCULATE STRESSES AT CRITICAL STRESS
ELEMENTS

CALCULATE CONSTRAINTS

ICALC = 3

PRINT ANALYSIS RESULTS
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OPTIMIZATION FLOW DIAGRAM

SUBROUTINE SUBROUTINE

COPES CONMIN
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TABLE V

GLOBAL CATALOG OF PARAMETERS

Global FORTRAN Math
Location Name Symbol Definition

1 R1 r Inside Radius

2 TH t Thickness

3 SL z Shaft Length

4 VOL V Volume

5-14 TQ(10) T Torque

15-24 P(10) P Internal Pressure

25-34 F(10) F Axial Load

35-44 RDS(10) W Shaft Speed

45 E E Young's Modulus

46 G G Shear Modulus

47 PR v Poisson's Ratio

48 YS Sy Yield Strength
(Tension)

49 YC S Yield Strength
C (Compression)

50 SU 5  Ultimate Strength

51 RO r Outside Radius

52 SPWT Y Weight Per Unit
Volume

53 AI I Moment of Inertia

54 AJ J Polar Moment of
Inertia

55 HS a H Hoop Stress

56 AST axA Axial Stress at A

57 ASTN (in) Minimum AxialStress

58-67 ASC(10) axB Axial Stress at B

68-77 SALT(10) aa ' Alternating Axial
Stress

78 SMEAN 0 Mean Axial Stress

79 SST TT  Torsional Shear
Stress
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80 SSV T Shear Stress due to
Sheer Force

81 SSMX Tmax  Total Shear Stress

82 TCRT TCritical Torque for
Buckling

83 SCSX a Critical Stress in
c Buckling

84-93 VMSI(10) U Von Mises (mean)

94-103 VMS2(10) a0 1 Von Mises at x = 0
104-113 VMS3(10) mid' Von Mises at Midspan

114 WM w Critical Speed
115 BM Mmax  Maximum Bending Moment

116 BMN Mm Minimum Bending Moment

117 V V Shear Forcemax
118 FC F Critical Column Bucklingc Load

119 SF SF Safety Factor

120-129 DEL(10) 6 Deflection

130-239 GC(10,10) GC Constraints
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APPENDIX B

The derivation of the equations for the deflection,

bending moments and shear force at the critical cross-

sections of the shaft are presented here. Pinned-pinned

and fixed-fixed end conditions are analyzed.

1. Pinned-Pinned

y dQ

I e e-dM pAdx

•T - _=-F d ~ 0 _F

22

Let y = d sin 11)

2dQ = dM (y+e)w

dQ = PAw2 (y+e) dx (1.2)

Let K - PAw2

dQ = K1 (do sin EX-+ e] dx (1.3)

9.1
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With the effect of weight:

dQ = [Kl(d o sin L + e) - I dx (1.4)

where K2 = PAg = numerically equal to weight per unit length

Q A dQ = K 2 -+e9.] - K2 Z (1.5)

Moment at x = x0

Q
M xo=X) + (x-x)dQ (1.6)

0

2 d d
M - + K (2 + S) + - KI 9 (- + e)]x (1.7)
x 2 1 T 2 2x

+ 1 x2- K d_ sin-

K2  2 K2 z

2 x + 2x

This represents the moment at any value of x. If the axial

load, F, is included, the total bending moment is

MTOTAL = Mx + 4F= Ely"

where MF = Fy = F (do sin ) (1.8)

Integrating twice:
Kle [9- ' K )

Ely 24 x - 22x 3 + x 4 ] + K do () sin t (1.9)

+ Fd O (!)2 sin L- - [£Z - 2kx 3 +

0 Tr -4
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At x = £/2' y = do

Eid - F 2 d 5jKle 4 5jK 2 £

0 1 d0 r - 0(T) 384 384

584 Kle - K2
dO l=K 2' (1.10)EI -KI()4_ F(I) 2

This is the deflection when the weight effect is subtractive.

The maximum deflection occurs when the weight tends to increase

the deflection.

5Z4  Kle + K2
dmax = 3- [EI - K (i) 4 - F(i)2 ]  (1.1i)

Substituting (1.10) in (1.7) and (1.8), the bending moment

at x = £/2 is

£ 2 K 2
M [ + d )2] + Fd 2£ (1.12)Mmin K1 [8 + do 8"

Again the maximum moment occurs when the weight effect is

additive

2 K 2£2
M K e + dm + Fd + (1.13)Mmax K1 [8 +max Tr 8

From Equation (1.5), the maximum shear force VM x is equal

to Q or

K1 dma£ KleZ K2£

VMAX 1 max Z+ K12 eY (1.14)MAX T 2 2
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2. Clamped-Clamped

A similar derivation procedure for clamped-clamped ends

using a shape function:

d 2Tnx(21
do [I -cos -2x

and

d 2d° o
dQ =K 1 [2 2--x + e] dx (2.2)

Q= dQ = K 1Z + e (2.3)

0

Moment at x x 0
0 ox

M =M O - x+ (x -x) dQ

-KIZ -d Qxd° xd -z

+e) + K1  2 x
0 ) 2 Z

xd xd 0  2-,x
2 e2 2-x xe] dx (2.4)

M at any value of x:

KIZ d K d
EIy" M =Mo -

+ e) 1 2
0 22

KId 0 Z 27rx
-lo (i - cos -- (2.5)

8 7 2

78



Integrating once:

K d 3 2  Kd 92xEly' = M° X - R + e) (E3 2 °
22 2

8 8Tr

Kdo + 43 2 2

K~~~~ f- 12a4

-.o s in x + +

32 7T e

d 4

y 0 at x 0, C 2  ,4

EMo  K1  e) do 2do 2r

322iT

y d 0eat x more:

d 4 2 2 02
- d (-- e) z 4
K1  +-161T

d z4

Eld d 4

- 768 384 . + o

K1 326 4
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d Kl1ez 4

d = 4  (2.7)

384EI 4 (-7- + 24)

With axial load F:
Fd

Moment due to F MF =Mo - F M (- cos --- )

Integrating once: (2.8)

Fd
EIYF =M x - -2 (x -- i- x-22-- si 2--) + C

YF' = 0 at x = 0, C = 0

, Fd
= 0 at x = e, M 2o

where MO  Moment at the ends due to the axial load

Fd 2 Fd°  2 2x, --
Ely 2 2 [2 + -- 2 Cos z- 247r

Fd z2

YF 0 at x 0 C2  2
8 T

Fd 02
YF ( - -- --) (2.9)

At x = Z/2:

Fd o22

YF =
4 El80
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From Equation (2.6)

K1  d 2 2 2
- 2 (24 (x-Z) + e (S-4) (x-Z)

+ d0 (1 - c 27Tx
327r

4

At x = 2

KI24 d Kld0Z 4

w- 384EI (T +2 ] 16T 4 EI

do 0 yF + Yw

+ + + (2.0)

4r 2 EI 768EI 167 4 EI 0 384EI"

w d -- + K 4+ 4 ) do+ KI e Z 4

I16c 2El
2

KleZ4

1 e z 4 (2.11)4  24 4
384EI - K1  + + d0 + Tr 2

When the effect of weight is considered:
Ke4 + 24

d = K 4 2 (2.12)
o 384EI - 0.74638K1 Z4 - 96(i)2F

1iTr

where K2 = pAg, numerically equal to weight per unit length.
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